Smoothing spline analysis of variance models: A new tool for the analysis of cyclic biomechanical data.

نویسندگان

  • Nathaniel E Helwig
  • K Alex Shorter
  • Ping Ma
  • Elizabeth T Hsiao-Wecksler
چکیده

Cyclic biomechanical data are commonplace in orthopedic, rehabilitation, and sports research, where the goal is to understand and compare biomechanical differences between experimental conditions and/or subject populations. A common approach to analyzing cyclic biomechanical data involves averaging the biomechanical signals across cycle replications, and then comparing mean differences at specific points of the cycle. This pointwise analysis approach ignores the functional nature of the data, which can hinder one׳s ability to find subtle differences between experimental conditions and/or subject populations. To overcome this limitation, we propose using mixed-effects smoothing spline analysis of variance (SSANOVA) to analyze differences in cyclic biomechanical data. The SSANOVA framework makes it possible to decompose the estimated function into the portion that is common across groups (i.e., the average cycle, AC) and the portion that differs across groups (i.e., the contrast cycle, CC). By partitioning the signal in such a manner, we can obtain estimates of the CC differences (CCDs), which are the functions directly describing group differences in the cyclic biomechanical data. Using both simulated and experimental data, we illustrate the benefits of using SSANOVA models to analyze differences in noisy biomechanical (gait) signals collected from multiple locations (joints) of subjects participating in different experimental conditions. Using Bayesian confidence intervals, the SSANOVA results can be used in clinical and research settings to reliably quantify biomechanical differences between experimental conditions and/or subject populations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model

Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...

متن کامل

Statistical Learning in Medical Data Analysis

This article provides a tour of statistical learning regularization methods that have found application in a variety of medical data analysis problems. The uniting feature of these methods is that they involve an optimization problem which balances fidelity to the data with complexity of the model. The two settings for the optimization problems considered here are Reproducing Kernel Hilbert Spa...

متن کامل

Estimation of Variance Components for Body Weight of Moghani Sheep Using B-Spline Random Regression Models

The aim of the present study was the estimation of (co) variance components and genetic parameters for body weight of Moghani sheep, using random regression models based on B-Splines functions. The data set included 9165 body weight records from 60 to 360 days of age from 2811 Moghani sheep, collected between 1994 to 2013 from Jafar-Abad Animal Research and Breeding Institute, Ardabil province,...

متن کامل

Odds ratio estimation in Bernoulli smoothing spline analysis-of- variance models

Wahba and co-workers introduced the smoothing spline analysis-of-variance (SS ANOVA) method for data from exponential families. In this paper, we estimate the odds ratios based on an SS ANOVA model for binary data and construct Bayesian confidence intervals. We give a calculation using a real data set from the Wisconsin epidemiological study of diabetic retinopathy. We conduct simulations to ev...

متن کامل

Prediction of global sea cucumber capture production based on the exponential smoothing and ARIMA models

Sea cucumber catch has followed “boom-and-bust” patterns over the period of 60 years from 1950-2010, and sea cucumber fisheries have had important ecological, economic and societal roles. However, sea cucumber fisheries have not been explored systematically, especially in terms of catch change trends. Sea cucumbers are relatively sedentary species. An attempt was made to explore whether the tim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanics

دوره 49 14  شماره 

صفحات  -

تاریخ انتشار 2016